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Abstract. Critical exponents for the O(n) spin model local field near a surface, an edge 
and a corner are calculated by means of the renormalisation group method for the special 
geometry where the wedge or comer is formed by mutually perpendicular ( d - 1 ) -  
dimensional walls, each having von Neumann (special transition) or Dirichlet (ordinary 
transitions) boundary conditions. The combined effect of two or more interacting surfaces 
leads to new local susceptibility exponents which are calculated to order E ( E  = 4 - d ) .  
The case of two or more von Neumann surfaces presents some difficulty in that a double 
divergence arises in the first-order perturbation calculation of the local susceptibilities. 

1. Introduction 

Geometric shapes and surface interactions play important roles in many physical 
systems. The most familiar examples of these systems can be found in the context of 
electrostatics (Jackson 1975) and heat conduction (Carslaw and Jaeger 1959). In recent 
years, these shape and boundary effects on the local critical behaviour of second-order 
phase transitions have become the subject of active study (Binder 1983), in part because 
of their relevance in wetting, adsorption, and phenomena in pores. It is well known 
by now that the presence of boundaries in a system near criticality often produces new 
singularities in local quantities. For example, the local susceptibility near a boundary 
has singular behaviour that depends on the boundary conditions (or surface interac- 
tions). In addition, some critical exponents may also depend on the shape of the 
boundary. For instance, the exponent for the susceptibility near a wedge formed by 
two intersecting free surfaces varies with the opening angle (Cardy 1983). For these 
local quantities, the concept of universality is a weaker notion than it is for bulk 
properties; it has to be defined for a given geometric shape and boundary condition. 

The wedge exponents for the O( n) spin model with Dirichlet boundary condition 
has been calculated to order E ( E  = 4 - d )  by using the field-theoretic renormalisation 
group method (Cardy 1983). The two- and three-dimensional edge critical behaviour 
of self-avoiding-walks (SAWS) and the Ising model have been investigated using series 
analysis (Guttmann and Torrie 1984). Real-space renormalisation group techniques 
have also been employed to study the Ising system with various boundary conditions 

$ Present address: Department of Chemistry, University of California, Los Angeles, CA 90024, USA. 

0305-4470/90/ 122575 + 11$03.50 @ 1990 1OP Publishing Ltd 2575 



2576 Zhen-Gang Wang, A M Nemirovsky, K F Freed and K R Myers 

(Larsson 1986) and percolation near an edge (Saxena 1987). In addition, exact results 
have been offered for edge exponents in two dimensions for the Ising model (n = l ) ,  
Potts model (Cardy 1984) and the SAW problem ( n = 0 )  (Cardy and Redner 1984, 
Duplantier and Saleur 1986) with Dirichlet boundary condition by using conformal 
symmetries (Dotsenko 1984, Cardy 1987). These conformal methods, however, have 
not proved useful in studying higher-dimensional systems (the most relevant being 
d = 3), where field-theoretic renormalisation methods are still the most powerful and 
systematic tools in understanding critical phenomena. 

This paper studies the local critical behaviour of an O ( n )  spin model bounded by 
p mutually perpendicular surfaces. The semi-infinite case corresponds to p = 1, the 
wedge geometry to p = 2 and the corner geometry to p = 3. The model is described by 
the standard Ginzburg-Landau free energy functional 

together with geometric constraints and appropriate boundary conditions. We consider 
two types of boundary conditions: von Neumann and Dirichlet. These boundary 
conditions can be derived from ( 1 )  by adding a surface term ss dd-'ricd2, with the 
former corresponding to c = 0 and the latter to c = CO. (Intermediate values of c are 
driven to the fixed point c =CO under the renormalisation group transformation 
(Burkhardt and Eisenriegler 1981, Diehl 1986).) Since we use dimensional regularisa- 
tion with minimal subtraction, the mean field c=O value for the special transition 
persists to all orders of perturbatuon theory (Diehll986). Other regularisation schemes, 
such as cutoff regularisation, produce a shift in c from its mean field value. The 
semi-infinite model ( p  = 1 )  has been studied extensively (Diehl and Dietrich 1980, 
1981, 1983, Diehl 1986); p = 2 with Dirichlet boundary conditions is a special case of 
that studied by Cardy (1983); the Ising model ( n  = 1)  with von Neumann boundary 
condition has been partially studied by Larsson (1986); whereas the other five 
possibilities (allowing mixed boundary surfaces) have not been previously considered. 

In the following sections, we study the singular behaviour of the local field, the 
correlation functions, and various response functions near the intersection of various 
surfaces. We calculate the local susceptibility exponent y to order E using renormalisa- 
tion group methods. Then, combining the value of y with the scaling relations derived 
in the next section, we obtain the anomalous scaling dimension for the local field. The 
latter enables us to derive the scaling behaviour of any two-point spin-spin correlation 
functions and response functions. 

To facilitate the calculation, the Green function G'O'( r, r'; t )  for the free field (go = 0) 
is written as the Laplace transform of the Green function G'O'(r, r'; N )  for an ideal 
(Gaussian) polymer chain, with t the Laplace conjugate variable to the chain length 
N (Eisenriegler et a1 1982, Freed 1987). The polymer representation is convenient 
because G'O'( r, r'; N )  factors into its Cartesian components 

d 

G'O'(r, r';  N )  = n G'"(xi, xi; N )  
i = l  

where d is the dimensionality of the system. This last feature enables us to express 
the zeroth-order Green function for our geometry as a product of d simple one- 
dimensional Green functions, each satisfying its own boundary condition. The propa- 
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gator G'O'( r, r'; t ) ,  on the other hand, is non-separable and quite unwieldy for computa- 
tions. Use of the representation (2) also facilitates consideration of intermediate values 
of c for 0 < c < CO. The polymer-magnet correspondence has been employed in the 
past to study the properties of polymers by using results derived in the magnet context. 
Here we use it conversely to study the scaling behaviour of the magnet (spin) system 
by calculating the corresponding polymer problem which is mathematically much 
simpler to treat for the particular geometries in consideration. 

2. Scaling analysis 

Consider the two-point correlation function between the field 4 ( r )  at r and the field 
4 ( r ' )  at r':  

G ( r ,  r'; t )  = ( 4 ( r ) 4 ( r 1 ) ) *  (3) 

Since the canonical (mean field) scaling dimension of the field is L1-d'2,  where L 
denotes the dimension of length, the correlation function (3 )  has the dimension L2-d. 
If one of the fields, say +( r ) ,  is located at a c = CO surface, then the correlation function 
vanishes because of the Dirichlet boundary condition. In order to obtain a meaningful 
correlation function in this case, it is necessary either to replace 4 by ( l / c ) (dq5 /dz ) ,  
where z is the coordinate normal to the surface, keeping c large but finite, or, 
alternatively, to evaluate the correlation function at a distance a away ( a  + 0) from 
the surface by replacing 4 by a ( 8 4 / d z )  (Diehl and Dietrich 1981, Diehl 1986). These 
two approaches are completely equivalent, apart from an unimportant prefactor. We 
adopt the second choice here. Because the normal derivative reduces the dimension 
by unity, the field near a Dirichlet surface has the reduced scaling dimension L-d'2.  
More geneally, it can be shown (see the next section) that, if the field 4 is near the 
intersection of nD orthogonal Dirichlet surfaces, it should be replaced by 
a,. . . a,,(dnD4/dzl. . . . d z n D ) ,  and hence the canonical dimension reduces by n,. Tak- 
ing these cases into account, the correlation function has the scaling behaviour 

(4) 

Near criticality, fluctuations produce anomalous scaling dimension to the field. 

G (  r, r'; t )  - L 2 - d - n ~ - n  0. ' 

Then (4) should be modified to read 

7 ( 5 )  G( ,., t )  - ~ Z - d - n ~ - n A + h + h '  

where h and h' are, respectively, the anomalous scaling dimension of the two fields 
at r and r', respectively. (We have assumed that r and r' are far apart. If r'+ r, then 
the field operators coalesce to the composite operator 4*(r)  which in general has a 
different anomalous scaling dimension (Amit 1984).) 

Linear response theory implies that the two-point correlation function in (3) is also 
the response function of the field at r to an infinitesimal external field at r'. Such 
response (susceptibility) functions to the applied surface field, bulk field, etc, may be 
obtained by integrating (3)  over appropriate coordinates in the codimension d ' .  Then 
these susceptibility functions have the following scaling behaviour: 
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The susceptibility exponent y is defined as 

x - t - Y  (7)  

where t is the usual reduced temperature. Since t is related to the length L by L- f - ” ,  
with Y being the usual correlation length exponent, (6) is written in t as 

(8)  - - Y ( 2 - d  -nD- n A+ h + h ’+ d ’) 

Comparing (8) with (7) one identifies the susceptibility exponent y as 

y = 4 2 -  d - nD - n b + h + h ’ + d ’ ) .  (9) 

The counterparts of these susceptibility functions for the polymers are the various 
restricted partition functions T with one or both ends fixed at the boundary surface(s) 
(Eisenriegler et a1 1982, Nemirovsky and Freed 1985, Wang et a1 1987). For example, 
the susceptibility function of a field at the edge to the bulk external field is related to 
the partition function of a polymer chain with one end fixed at the edge and the other 
end free. Mathematically, these partition functions for the polymer of length N are 
obtained by inversely Laplace transforming the corresponding susceptibility functions 
in the n + 0 limit of the O ( n )  spin model: 

(10) T(  N )  = lim U- ’ {x (  t ) }  
n -0 

where 2 - l  denotes the inverse Laplace transform operator. 
In the next section, we use the direct chain conformation RG method (Freed 1987) 

to calculate the polymer partition functions T ( N )  with one end fixed at the comer, 
edge, surface, etc, while the other end is free. Thus, we have d ’ =  d and h ’ =  hbulk,  the 
latter being zero to order E (Amit 1984). However, we do not impose the n + 0 limit. 
Then (9) enables us to find the anomalous dimension h for the field at the comer, 
edge, etc, which in turn can be used to compute the exponent y when the other end 
is on the surface, near the edge, etc. 

3. Order E RC calculation of the exponent y 

The perturbation expansion for the two-point function follows the standard Feynman 
rules (Amit 1984) which have been shown to remain unaltered by the presence of 
boundaries (Diehl 1986). To first order in the coupling parameter go, we have 

G(r ,  r’;  t ) =  G‘O’(r, r‘;  t ) - d ( n + 2 ) g o  dr, G‘O)(r, rl;  t )G(o) (r l ,  r , ;  t)G‘”(r,, r’;  t )  

(11) 

where G‘O) is the zeroth-order (unperturbed) two-point function that satisfies the 
appropriate boundary conditions and n is the number of components of the field. 
After an inverse Laplace transform (1 1) becomes 

I 
+ O ( g 3  

G ( r , r ’ ;  N ) = G “ ’ ( r , r ’ ;  N ) - d ( n + 2 ) g , ~ 0 ~ d ~ 2 1 ~ d r ,  drlG(o)(r,rl; N - T ~ )  

x G ( ’ ) ( r I ,  r , ;  T ~ - T ~ ) G ( ’ ’ ( ~ ~ ,  r’; T 1 ) + 0 ( g : ) .  
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By using the property (2),  G‘”(r ,  r ’ ;  N )  can be written explicitly as 

G‘”(r ,  r’; N )  = ( ~ T ’ / ~ N ’ / ~ ) - ~  n exp[ - ( X I  - x:l2/4N] 
d - n , - n ,  

, = I  

n h  

x n {exp[-(y, - ~ : ) ~ / 4 ~ 1  +eXp[-(yJ + ~ : ) ~ / 4 ~ 1 )  

x n {exp[-(zk - zk)2/4N] - exp[-(z, + Zk)2/4N11 

J = 1  

“D 

k = l  
(13) 

where {y,} denores the coordinates normal to the von Neumann surfaces, {zk} denotes 
the coordinates normal to the Dirichlet surfaces, and {x,} denotes the translationally 
invariant coordinates parallel to the surfaces. Although the polymer analogue of (13) 
corresponds to the n + O  limit of the free O ( n )  field, the relations (11)-(13) are quite 
general for the O ( n ) ,  n # 0, field theory as n enters only as a coefficient of the one-loop 
contribution in ( 1 1 )  and (12). 

Equation (13) is simply the Green function for an ideal polymer chain with contour 
length 2N.  The universal part of partition function for the chain with an end fixed at 
r’ is simply 

T ( N )  = dr G ( r ,  r’; N ) .  (14) 5 
We set x :  = 0, y: = 0 and z; = a (a  + 0). The integration of the zeroth-order term in 
(12) can be easily performed to yield 

T‘’’( N )  = [a/r1/2N1/2]nD (15) 
where we have used the relation 
exp[-(zk - z ; )* /~N]  -exp[-(zk + z ; ) ~ / ~ N ]  

= (az/ N )  exp[ - z 2 / 4 ~ ]  (z ’=a+O) .  (16) 
In the first-order perturbation term, the translationally invariant coordinates are 

easily integrated first. Then, we use the fact that the integrations over the y, and zk 
are all uncoupled from each other, to arrive at 

F1)= JON dT2 d ~ ~ [ 2 r ~ ’ ~ ( ~ - ~ ~ ) ~ ~ ~ ] - “ ) [ 2 7 T ’ ’ ~ ( ~ ~ - ~ ~ )  1/2 ] - d  

x (27T’/2T:/2)-(n,+n,)Hn~HnD N D  (17) 
where the function H N  and HD are, respectively, 

HN = 2 lom dz lom dz’{exp[-(z - ~ ’ ) ~ / 4 (  N - 7 2 1 1  + exp[ -(z + Z‘)2/4(N- Q)]) 

X (1 +eXp[-Z‘2/(T2-T1)]} eXp[-Z”/(4T1)] 

= 2 T ’ I 2 ( N -  T2)1/22771’2T1’2[1 + ( T 2 -  T 1 ) ’ l 2 / ( 3 T l +  T2)’/’] ( 1 8 ~ )  

HD = loE dz loa dz’{exp[-( Z - Z’)2/4( N - T2)] - exp[ -( Z + Z’I2/4( N - T 2 ) ] }  

x (1 - exp[-z”/ ( T~ - T I  )]}(aZ’/ T I )  e ~ p [ - z ’ ~ / ( 4 ~ ~  )I  
= 257’/’( N - T2)1/22r1’2T:’2ar-1’2{[ N - ( T2 - T1)]-’l2 

-(T2-T~)3’2(3T1+T~)-1[4T1(N-T2)+(T2-T1)(N-72+T~)]-’’2} (186) 
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and T ( ’ )  is defined as the first-order contribution to (12)  divided by -( n + 2)g0/6.  Then 
performing integration over z and z’, (17)  becomes 

T(’) = loN d~~ 1; d 7 , [ 2 7 ~ ’ / ~ (  7 2  - T ~ ) ’ / ~ ] - ~ F ~ F ~  (19)  

with the integrand factors 

FN = 1 + ( 7 2 - 7 1 ) 1 / 2 / ( 3 7 1 + T 2 ) ’ / 2  (20a)  

+ ( 7 2  - T I ) (  N - 7 2  71)]-”’}. (20b)  

FD = aT-’/’{[ N - ( 7 2  - TI)]-”’ - ( 7 2  - 7 1 ) ~ / ~ ( 3 7 1  + T2)-’[471( N - 7 2 )  

Equation (19) can be brought into a more convenient form by defining the 
dimensionless variables t = T ~ /  N ,  s = 1 - r l /  T ~ ,  and by writing E = 4 - d. This converts 
(19)  into 

with 

FN = 1 + ~ ~ ‘ / ~ ( 1  - 3 ~ / 4 ) - ’ / ~  (220)  

F D -  - a7r-1 /2  N-’I2{(1 - ~ t ) - ’ / ~ - ~ ~ ~ / ~ ( l - 3 s / 4 ~ ” [ 1 - 3 s / 4 - t ( l - s / 2 ) ~ ] - ’ ’ ’ } .  (22b)  

The integral in (21)  is evaluated by following the procedure of dimensional regularisa- 
tion (’t Hooft and Veltman 1972, Amit 1984, Freed 1987). To obtain the exponent y 
to order E ,  it is only necessary to extract the residue of the E - ’  pole. Clearly, the 
divergences arise from the s + 0, t + 0 behaviour of the integrand in (21) .  It is easy to 
see that the E-’ terms come from the forms s ’g ( t )  and t O f ( s )  in F “ , N Z ,  wheref(s) 
and g(t) are regular functions in the limits s-0 and t + 0 ,  respectively. However, 
when g( t )  = constant + higher powers of t, a double pole arises, since the s and t 
integrals both have E-’ poles. This happens when nN 2 2 ,  as demonstrated in the 
following. 

For simplicity, let us first consider the case nD = 0. For nN 3 2, (22a)  yields 

F ” , N l + ~ n ~ ~ ” ~ ( 1 - 3 ~ / 4 ) - ” ~ + f n N ( n N - l ) ~ ~ ( l - 3 ~ / 4 ) - ‘ + .  . . . (23)  

The t-integration in (21)  can be easily performed to yield 

In the s-integration, it can be seen that all other terms in (23)  except the third term 
yield a finite contribution, while the third term produces 

lo’ ds s - 2 + E / 2 1  2nN(nN - l )a s ( l  -3s/4)-’  

= i n N  ( nN - 1 )  jo’ ds  + finite terms 

= i n N (  nN - 1 ) 2 ~ - ’  +finite terms. 
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Thus we see the emergence of the double pole i n N ( n N  - 1 )  ( 2 ~ - ' ) ~  for nN 2 2. This 
pathological behaviour is not remedied by F Z  as the first term in the expansion of 
F: in ascending powers of s and t is a constant independent of E. Calculations of 
the moments of the two-point correlation function G(r, r ' ;  t )  or, equivalently, of the 
polymer analogue end-vector distribution shows that these moments are free of the 
double pole term and any associated additional order E - '  singularities (Myers er a1 
1990). Thus it appears that the double-pole term represents an additive contribution 
to the free energy. However, the (physical) origin of this double pole remains to be 
understood. The results of our calculations in this section are valid for nN <2  but 
should be taken as tentative for nN 2 2. 

For nN < 2 ( nN = 0 or l ) ,  the divergent part of (21) can be easily extracted. In this 
case the expansion in (23) terminates after the second term, whereas for FD we write 

F D -  - a T - 1 / 2 N - ' / 2  [ I  + t s t + ~ ( s 2 t 2 )  - ~ ~ ~ / ~ ( 1  - 3 s / 4 ) - 3 / 2 + ~ ( s 3 / 2 t ) l .  (26) 

( 1  - 3 ~ / 4 ) - ' ~ ' + ' ) ' ~  +convergent terms I ( - g ) i s ( 3 1 + i ) / 2  

upon expanding the second bracket in (27). 
The first and second terms can be integrated to yield 

+(nD/2)2E- ' / (1  + E / 2 )  

while the remaining s-integrals all have the form 

Io' ds s-2+E'2sA ( 1  - 3 ~ / 4 ) - ~ ,  

For A > 1, the integral is evaluated by expanding the power s E i 2  in E as 

jol ds s - 2 + e i 2 s A  ( 1  - 3s/4)-" = ds  C 2 s A  (1  - 3 ~ / 4 ) - ~  + O( E ) .  (31) 

Changing variable U = s-', the first term in (31) becomes 

dv(v-a)-A = ( A  - 1)- '4A-1,  
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For A < 1 ,  we integrate (31 )  by parts to write 

s ( 1  -3s/4)+ 

( 1  - 3 ~ / 4 ) - ~  1 = ( - ~ + E / ~ + A ) - ~ ( S - ' + ' / ~ + *  
I,' ds S - 2 + e / 2  A 

- ( 3 A / 4 )  Io1 ds ( 1  -3s/4)-"-'). (33 )  

The first term on the right-hand side of (31) is evaluated for E > 2 and then analytically 
continued to E > 0. The last integral in (33) can now be calculated by using (31)  and 
(32) .  It is thus found that the order E O  term still has the form of (32) .  Hence, (32 )  
applies for both A < 1 and A > 1 ,  but becomes divergent when A + 1 .  The latter is 
exactly what happens when nN 2 2. 

Combining all these results yields T"' as 

~ ( 1 )  = ( 2 T l / 2 ) - d ~ E / 2 (  U T - " ' N - ~ / ~ ) " D [ - ~ E - ~  + nDE--'- E-l(nN + ~ , ( n , ) +  nN12(nD))] 

+ O( E O )  (34) 

and the partition function T (  N) of (14 )  becomes 

T =  T ' 0 ' - ~ ( n + 2 ) g 0 T ' 1 '  

= (ar- ' / 'N- ' / ' ) "D[1  + d ( n  + 2 ) g , ( 2 ~ " ~ ) - ~ ~ ' / ' 2 ~ - '  

nN/2+I I (nD) /2 -  nD/2+ nN12(nD)/2)l+o(E) (35 )  
where the functions Il (nD) and I 2 ( n D )  are defined as 

- 
"0 n D !  -=-( ( - I ) ' + '  1 r ( ; ) r ( n D + i )  
i = l  z ! (n , - i ) !  3 i - 2  2 r(n,+;) I I (nD)= . 

1 4 41 For nD = 1,2 ,3 ,  11( nD) = 1 ,  i ,  $ and 12( n,) = ~ , 3 ,  z, respectively. 
We define the dimensionless coupling parameter 

U0 = g0(2T)-~sdK-'  (38 )  
where s d  = 2 ~ " l ' / r ( d / 2 )  is the surface area of a d-dimensional hypersphere of unit 
radius and K - I  is some phenomenological length scale. Removing the divergence 
following the standard renormalisation procedure (Amit 1984, Freed 1987), expanding 
( K ' N ) ~ / ~  in powers o f  E and re-exponentiating at the fixed point U* = 6 ~ / ( n  + 8 )  (Amit 
1984), we obtain 

T = (ar-1/2)nDN-"D/2(K2N)[(n + 2 ) / 2 ( n  + 8 ) ] ~ ( 1 +  n N / 2 +  I l ( n D ) / 2 -  n D / 2  

+ nNI2 ( n D ) / 2 ) + 0 ( E ) (39 )  
from which we identify the exponent y as 

n + 2  
2 ( n + 8 )  y = 1 - n,/2+- ~(l+n~/2+I,(n,)/2-n,/2+n,I,(n,)/2)+0(~~). (40 )  

The result (40) reproduces the known values of the exponent y for nN = n, = 0 (bulk), 
nN = 1 ,  n,  = 0 (semi-infinite, special), and nN = 0, n, = 1 (semi-infinite, ordinary). It 
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is interesting to observe the appearance of a coupled term in ( 4 0 )  when nN # 0, nD # 0. 
For instance, a 90" wedge formed by one van Neumann surface and one Dirichlet 
surface yields 

E + O( E 2 ) .  
1 7 ( n + 2 )  y=-+-- 
2 8 ( n + 8 )  

The anomalous dimension for the field near the intersection of nN von Neumann 
surfaces and nD Dirichlet surfaces is obtained from ( 9 )  by setting d ' =  d,  in which case 
h'=O+O(E2) and 

This anomalous dimension ( 4 2 )  enables us to obtain the exponent y for the case where 
the other end is not free, but is constrained to lie on the intersection of ( n & +  nb) 
surfaces. Then d ' =  d - ( n & + n b ) ,  and using ( 9 ) ,  we find 

n + 2  
2 ( n + 8 )  

y = 1 - i ( d  - d ' +  nD + nb) +- 

It is easily verified that ( 4 3 )  reproduces the familiar y values for the bulk Yb ( nN = nD = 
n& = n b  = 0 ) ,  ordinary yPf;' ( n N  = n k  = 0, nD = n b  = l),  and special (nN = n" = 
1, n ,  = n b  = 0). For the interesting case where both ends are on the edge formed by 
a von Neumann surface and a Dirichlet surface ( nN = nD = n k  = n b  = l ) ,  we have the 
new result 

3 ( n + 2 )  
4 ( n + 8 )  

y =  - I + -  - E + O( E * ) .  ( 4 4 )  

In the case of two intersecting Dirichlet surfaces, our results disagree with those of 
Cardy (1983)  for a = v / 4 .  Finally, we emphasise that the above calculations for nN 2 2 
should be taken as tentative because of our need to properly treat the double-pole 
contributions. 

4. Concluding remarks 

We have calculated a class of critical exponents for the local susceptibilities of the 
O ( n )  spin model, which arises from the presence of a surface, an edge, a corner, or 
combinations thereof. Our results illustrate the importance of these geometric condi- 
tions, as well as the role of surface interactions, in governing the local critical behaviour 
of the system. A novel feature of our calculation is that we consider a variety of mixed 
von Neumann and Dirichlet boundary conditions. For example, a wedge may be 
formed by a von Neumann surface and a Dirichlet surface. In such cases, the singular 
behaviour (anomalous scaling dimension) of the local field contains contributions from 
each boundary condition as well as a coupling term which reflects the combined effects 
of the von Neumann and Dirichlet boundary conditions (cf (40)). When the intersection 
consists of two or more von Neumann surfaces, a pathological E - *  pole appears in 
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the first-order E expansion. We have recently found that such double pole is not only 
present in the 90" geometry, but it persists to a wedge of any opening angle rr /n  
( n  = 2,3,4, . . .) with an angle-dependent residue (Myers e? a f  1990). This double pole 
can be removed by absorbing it to the zero point of the free energy (additive renormalisa- 
tion), as is supported by the absence of such double poles and any associated additional 
order E-'  poles in the calculations of the moments of the two-point correlation function. 
Nevertheless, it remains necessary to understand the physical origin of the appearance 
of this double pole. It is possible that the theory with two or more intersecting von 
Neumann surfaces are not renormalisable in its present form and that additional edge 
and corner operators are required to produce a finite theory. A formal proof of the 
renormalisability of the theory, however, is clearly beyond the scope of the present 
paper. 

We would like to comment that similar unexpected features have appeared in a 
number of studies of the edge critical behaviour. Cardy (1983) pointed out some 
difficulties with his E expansion at the edge ordinary transition that occur when the 
opening angle a < ( 5 ~ / 2 4 ) [ (  n + 2)/( n + 8 ) ] ~  + O(E'). Larsson, using real-space RG, 

finds that if the angle between the two ordinary (special) surfaces is less (larger) than 
53" (297"), the edge fixed point disappears (diverges) (Larsson 1986). He interprets 
the second case as a signal of the occurence of a first-order transition. On the other 
hand, the calculations of Guttmann and Torrie (1984) and Saxena (1987) for the SAW 

and the Ising model, and for percolation, respectively, near the edge ordinary transition 
do not show similar difficulties. It is possible that some of these anomalies are 
interrelated and that they are some artefact of the E expansion for wedge geometries. 
On the other hand, they could also signal some new physical phenomena. Either way, 
further investigations are warranted. 
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